Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis.
نویسندگان
چکیده
The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y. This reaction is catalyzed by two unrelated cyclase enzymes using different chemistries. The majority of anoxygenic phototrophic bacteria use BchE, an O2-sensitive [4Fe-4S] cluster protein, whereas plants, cyanobacteria, and some phototrophic bacteria possess an O2-dependent enzyme, the major catalytic component of which is a diiron protein, AcsF. Plant and cyanobacterial mutants in ycf54 display impaired function of the O2-dependent enzyme, accumulating the reaction substrate. Swapping cyclases between cyanobacteria and purple phototrophic bacteria reveals three classes of the O2-dependent enzyme. AcsF from the purple betaproteobacterium Rubrivivax (Rvi.) gelatinosus rescues the loss not only of its cyanobacterial ortholog, cycI, in Synechocystis sp. PCC 6803, but also of ycf54; conversely, coexpression of cyanobacterial cycI and ycf54 is required to complement the loss of acsF in Rvi. gelatinosus These results indicate that Ycf54 is a cyclase subunit in oxygenic phototrophs, and that different classes of the enzyme exist based on their requirement for an additional subunit. AcsF is the cyclase in Rvi. gelatinosus, whereas alphaproteobacterial cyclases require a newly discovered protein that we term BciE, encoded by a gene conserved in these organisms. These data delineate three classes of O2-dependent cyclase in chlorophototrophic organisms from higher plants to bacteria, and their evolution is discussed herein.
منابع مشابه
Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides
UNLABELLED The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzy...
متن کاملProtochlorophyll-like Pigment Produced by Rhodopseudomonas spheroides
The identification of intermediates in the biosynthesis of chlorophyll has been largely dependent upon the use ofmutants of Chlorella that are unable to synthesize chlorophyll but accumulate in the medium various tetrapyrrole compounds assumed to be precursors (for a review see Granick & Mauzerall, 1961). In particular, Granick (1950) identified magnesium vinylphaeoporphyrin a5 monomethyl ester...
متن کاملElucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis
Most of the chlorophylls and bacteriochlorophylls utilized for light harvesting by phototrophic organisms carry an ethyl group at the C8 position of the molecule, the product of a C8-vinyl reductase acting on a chlorophyll/bacteriochlorophyll biosynthetic precursor. Two unrelated classes of C8-vinyl reductase are known to exist, BciA and BciB, found in the purple phototroph Rhodobacter sphaeroi...
متن کاملMagnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli.
Magnesium-protoporphyrin chelatase lies at the branch point of the heme and (bacterio)chlorophyll biosynthetic pathways. In this work, the photosynthetic bacterium Rhodobacter sphaeroides has been used as a model system for the study of this reaction. The bchH and the bchI and -D genes from R. sphaeroides were expressed in Escherichia coli. When cell-free extracts from strains expressing BchH, ...
متن کاملThe Inhibition of Bacteriochlorophyll Biosynthesis in Rhodopseudomonas Spheroides by 8-hydroxyquinoline.
Granick (1948, 1950, 1961) has isolated different mutants of Chlorella which are unable to synthesize chorophyll and which accumulate magnesium protoporphyrin, magnesium vinyl phaeoporphyrin a5 and a monoester of magnesium protoporphyrin, presumed to be the monomethyl ester. Granick (1961) has proposed that these compounds are intermediates in chlorophyll biosynthesis, and it has been suggested...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 24 شماره
صفحات -
تاریخ انتشار 2017